RREF v.s. Span

Consistent or not

- Given $\mathrm{Ax}=\mathrm{b}$, if the reduced row echelon form of [A b] is

$$
\left[\begin{array}{cccc}
1 & 0 & 3 & 1 \\
0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Consistent

b is in the span of the columns of A

- Given $\mathrm{Ax}=\mathrm{b}$, if the reduced row echelon form of [A b] is

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& 0 \cdot x_{1}+0 \cdot x_{2}+0 \cdot x_{3}=1
\end{aligned}
$$

inconsistent
b is NOT in the span of the columns of A

Consistent or not

$A x=b$ is inconsistent (no solution)

The RREF of [$\mathrm{A} b$] is

Only the last column is non-zero

$$
\left[\begin{array}{cccccc}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
\hline 0 & 0 & 0 & 0 & 0 & d \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] d \neq 0
$$

$\mathrm{Ax}=\mathrm{b}$ is consistent for every $\mathrm{b} \quad A: m \times n$

II

Every b is in the span of the columns of $\mathrm{A}=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$

II

Every b belongs to $\operatorname{Span}\left\{a_{1}, \cdots, a_{n}\right\}$

II

$\operatorname{Span}\left\{a_{1}, \quad \cdots, a_{n}\right\}=R^{m}$
II
RREF of［A b］cannot have a row whose only non－zero entry is at the last column

II
RREF of A cannot have zero row

沒有任何破綻

II
Rank $A=$ no．of rows

Consistent or not

A: $m \times n$

$\operatorname{Span}\left\{a_{1}, \cdots, a_{n}\right\}=R^{m}=\operatorname{Rank} A=$ no. of rows

More than m vectors in R^{m} must be dependent.

Independent

這個發現已經提過，現在只是從 span 的觀點再說一次

Rank

Matrix A is full rank if Rank $A=\min (m, n)$

－Given a mxn matrix A ：
－Rank $A \leq \min (m, n)$
－Because＂the columns of A are independent＂is equivalent to＂rank $A=n$＂
－If $m<n$ ，the columns of A is dependent．

$$
\begin{aligned}
& {\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]} \\
& 3 \times 4 \\
& \text { Rank } \mathrm{A} \leq 3
\end{aligned}
$$

$$
\left\{\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right],\left[\begin{array}{c}
* \\
* \\
*
\end{array}\right]\right\}
$$

A matrix set has 4 vectors belonging to R^{3} is dependent

In R^{m} ，you cannot find more than m vectors that are independent．
 span 的觀點再說一次

Example

m independent vectors can span R^{m}

Consider R ${ }^{2}$

Does $\mathcal{S}=\left\{\underset{\text { independent }}{\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right.},\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$ generate \mathcal{R}^{3} ?

